A New Therapy for Nonalcoholic Fatty Liver Disease and Diabetes?
INT-747 - the First FXR Hepatic Therapeutic Study.

Arun J. Sanyal¹, Sunder Mudaliar², Robert Henry², Hanns-Ulrich Marschall⁴, Linda Morrow³, Cathi I. Sciaccia⁶, Paul Dillon⁷, Paul Clopton², Mark Kipnes⁵, David Shapiro⁶

1. Virginia Commonwealth University, Richmond, VA, USA.
2. VA San Diego Healthcare System & University of California, San Diego, CA, USA.
3. Profil Institute for Clinical Research, Chula Vista, CA, USA.
5. DGD Clinic, San Antonio, TX, USA.
6. Intercept Pharmaceuticals, Inc., San Diego, CA, USA.
7. Siemens Healthcare Diagnostics, Tarrytown, NY, USA.

Presented at AASLD 2009, Boston – Hepatology 2009; 50(S4): A183
Bile Acids: from Simple Detergents to Homeostatic Metabolic Mediators

- **Detergents - Gut**
 - Solubilize fats in intestine \rightarrow absorption

- **Farnesoid-X Receptor** – Liver, bile ducts, fat
 - Nuclear receptor for bile acid signaling
 - **Makishima Science** 1999; 284: 1362
 - Natural ligand: Chenodeoxycholic acid
 - Feedback via FGF-19 & SHP
 - \downarrow Hepatic Triglyceride, VLDL Synthesis
 - **Wanatabe JCI** 2004; 113: 1408-1411
 - Modulation of insulin sensitivity & adiposity
 - **Cariou J Biolog Chem** 2006; 281:11039–11049

- **TGR-5** – Liver, fat, enteroendocrine cells
 - G Protein Coupled Receptor - cell membrane
 - Mediates intracellular conversion of T4 to T3
 - **Wanatabe Nature** 2006; 439: 484-489
 - \uparrow GLP-1 & Insulin
 - **Thomas Cell Metabolism** 2009; 10: 167-177
6α-Ethyl Chenodeoxycholic Acid - INT-747
Semi-Synthetic Derivative of Chenodeoxycholic Acid

CDCA
chenodeoxycholic acid

INT-747
6α-ethyl chenodeoxycholic acid

FXR EC_{50} (agonism) 8.66 µM → 0.099 µM

~ 2 log ↑ FXR agonism

Pelliciari R. J.Med.Chem 2002
The Enhanced Potency of 6ECDCA Results from the Filling of a Hydrophobic Pocket by the 6α-Ethyl Moiety

INT-747: Potent and Selective FXR Agonist

- No meaningful activity vs. other Nuclear Receptors
- EC50 for TGR5: 20 µM
- No effects + broad enzyme & receptor screen (at 10 µM)
- Extensively metabolized to glycine and taurine conjugates
 - Equipotent FXR agonism
 - Enterohepatic recirculation
Normal Volunteers – Plasma Concentrations

Post dose: Day 12
Preclinical Studies Overview

• Numerous animal models evaluated
 - BDL, estrogen, litho-cholic acid, CCl₄, ANIT, thioacetamide injury
 - Effects consistent with FXR agonism
 • Induced FXR target genes
 • SHP induction and Cyp7α1 and Cyp8β1 repression
 - Cholerectic
• Anti-fibrotic
 - α1 collagen, αSMA, TGFβ1, MMP-2, TIMP-1, and TIMP-2 mRNA
 - Histology - ↓ fibrosis, reversal of cirrhosis, ↓ Portal hypertension
INT-747 Reverses Fibrosis & Cirrhosis

Thioacetamide (TAA) rat liver fibrosis model

TAA rat model of fibrosis, control vs. INT-747 5mg/kg ip daily begun 4 weeks post-injury in cirrhotic animals for 4 weeks

INT-747 reverses established fibrosis/cirrhosis in validated animal models

Friedman S. et al., AASLD Presentation, 2005
Type 2 Diabetes + NAFLD Exploratory Study

Baseline

- Placebo
- INT-747 25mg
- INT-747 50mg

Euglycemic Clamp - 2 Stage

0 1 2 4 6

Baseline
2 weeks

Double Blind Phase
6 weeks
Principal Entry Criteria

• **Inclusion**
 - **Type 2 diabetes** history – ADA criteria:
 - **NAFLD**, defined by ≥ 1 of:
 - **Liver Enzymes**↑
 - **ALT** ≥47 U/L (females), ≥56 U/L (males)
 - **AST** ≥47 U/L (females), ≥60 U/L (males)
 - **Ultrasound/Imaging consistent + NAFLD**
 - **Liver biopsy** (past 5 yr).

• **Exclusion**
 - **Bilirubin** >2 × ULN.
 - **ALT** >155 U/L (females), >185 U/L (males).
 - **AST** >155 U/L (females), >200 U/L (males)
 - **Anti-diabetic medications, except metformin, glyburide or incretins.**
Demographics

<table>
<thead>
<tr>
<th></th>
<th>Placebo - n</th>
<th>25mg - n</th>
<th>50mg - n</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>10</td>
<td>14</td>
<td>9</td>
<td>33</td>
<td>52%</td>
</tr>
<tr>
<td>Female</td>
<td>13</td>
<td>6</td>
<td>12</td>
<td>31</td>
<td>48%</td>
</tr>
<tr>
<td>Age - y</td>
<td>53</td>
<td>53</td>
<td>51</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Efficacy N</th>
<th>BMI</th>
<th>Wt kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>23</td>
<td>17</td>
<td>36.1</td>
<td>104.2</td>
</tr>
<tr>
<td>25mg</td>
<td>20</td>
<td>15</td>
<td>36.5</td>
<td>108.6</td>
</tr>
<tr>
<td>50mg</td>
<td>21</td>
<td>12</td>
<td>36.5</td>
<td>106.4</td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
<td>44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NAFLD Diagnosis

<table>
<thead>
<tr>
<th>Test</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT Increased</td>
<td>20</td>
</tr>
<tr>
<td>AST Increased</td>
<td>13</td>
</tr>
<tr>
<td>Ultrasound</td>
<td>84</td>
</tr>
<tr>
<td>Histology</td>
<td>3</td>
</tr>
</tbody>
</table>

≥ 1 criteria to qualify
Concomitant Drugs

<table>
<thead>
<tr>
<th>Category</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes</td>
<td></td>
</tr>
<tr>
<td>Biguanides (metformin)</td>
<td>83</td>
</tr>
<tr>
<td>Sulfonylureas (glyburide)</td>
<td>25</td>
</tr>
<tr>
<td>Other diabetes Rx (not insulin)</td>
<td>6</td>
</tr>
<tr>
<td>Lipid Lowering</td>
<td></td>
</tr>
<tr>
<td>Statins</td>
<td>43</td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
</tr>
<tr>
<td>Renin Angiotensin Agents</td>
<td>45</td>
</tr>
<tr>
<td>Other anti-HTN</td>
<td>46</td>
</tr>
<tr>
<td>Other drug(s)</td>
<td>97</td>
</tr>
</tbody>
</table>
Results
Glucose Disposal Rate: Low Dose Insulin
60 mU x m² body surface area/min

Day 0
Day 43

Placebo (N=17)
25 mg (N=15)
50 mg (N=12)

Combined doses vs placebo: p=0.048
Glucose Disposal Rate: High Dose Insulin

120 mU x m² body surface area/min

Combined doses vs placebo: p=0.022

Placebo (N=17)
25 mg (N= 15)
50 mg (N=12)

GDR (mg/kg/min)

Day 0
Day 43
% Δ Weight – All Patients

- Placebo
 - N=21
- 25 mg
 - N=20
- 50 mg
 - N=18

p = 0.008
Clinical AEs in >1 Patient & Significant AEs

<table>
<thead>
<tr>
<th></th>
<th>Pbo</th>
<th>25mg</th>
<th>50mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/group</td>
<td>23</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>N</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Any AE</td>
<td>14</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>Constipation</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Headache</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Pruritus</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pyrexia</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>URTI</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ALT/AST Increase*</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

* Only severe AE – all others mild or moderate
Gamma-Glutamyl Transpeptidase

ULN range: 39 to 65 U/L

- Placebo (N=23)
- 25 mg (N=20)
- 50 mg (N=18-21)

*p = 0.001
*p = 0.0005
Liver Enzymes

ALT
- ULN range: 45 to 52 U/L
- Treatment Day
- Graph showing data for Placebo (N=23), 25 mg (N=20), and 50 mg (N=18-21) with a p-value of 0.003

AST
- ULN range: 30 to 52 U/L
- Treatment Day
- Graph showing data for Placebo (N=23), 25 mg (N=20), and 50 mg (N=18-21)

Alkaline Phosphatase
- ULN range: 104 to 163 U/L
- Treatment Day
- Graph showing data for Placebo (N=23), 25 mg (N=20), and 50 mg (N=18-21)
Lipids

Triglycerides
- ULN range: 149 to 250 mg/dl
- Placebo (N=23)
- 25 mg (N=20)
- 50 mg (N=18-21)

Total Cholesterol
- ULN range: 199 to 240 mg/dl
- Placebo (N=23)
- 25 mg (N=20)
- 50 mg (N=18-21)

HDL
- LLN range: 20 to 40 mg/dl
- Placebo (N=23)
- 25 mg (N=20)
- 50 mg (N=18-21)

LDL
- ULN range: 99 to 130 mg/dl
- Placebo (N=23)
- 25 mg (N=20)
- 50 mg (N=18-21)
OTHER ANALYTES
ELF & FGF-19
Enhanced Liver Fibrosis [ELF] Test
NAFLD Validation

• Composite Score:
 ▪ TIMP-1
 ▪ Hyaluronic Acid
 ▪ P3NP (aminoterminal peptide of pro-collagen III)
 ▪ Validated in NAFLD & other diseases

Guha I, Parkes J, Roderick P et al.
Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: Validating the European Liver Fibrosis Panel and exploring simple markers. Hepatology. 2008; 47:455-60
ELF Test

<table>
<thead>
<tr>
<th>Class</th>
<th>ELF Range</th>
<th>All Patients - %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cirrhosis</td>
<td>> 12.00</td>
<td>-</td>
</tr>
<tr>
<td>Moderate</td>
<td>10.25 - 12.00</td>
<td>5</td>
</tr>
<tr>
<td>Mild to Moderate</td>
<td>7.40 - 10.25</td>
<td>76</td>
</tr>
<tr>
<td>Mild</td>
<td>6.60 - 7.40</td>
<td>14</td>
</tr>
<tr>
<td>None to Mild</td>
<td>< 6.60</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Analysis: P. Dillon, PhD Siemens Healthcare Diagnostics

Note: **Not** FDA cleared for use in USA; available in Europe (iQur)
Change in ELF Test Score – Day 0 to 43

- **25 mg (N = 20)**
- **Placebo (N = 23)**
- **50 mg (N = 20)**

- **p = 0.0037**

25mg vs Placebo

- Hyaluronic acid: p=0.05
- P3NP: p=0.01
- TIMP1: p=0.03
FGF-19 – Day 0 and 43

Mean values + SEM

- Placebo (N = 9)
- 25 mg (N = 21)
- 50 mg (N = 21)
Percentage Change in FGF-19
Day 0 to 43

Mean values + SEM

p < 0.001

-100
0
100
200
300
400
500

% Change in FGF-19

Placebo (N = 9)
25 mg (N = 21)
50 mg (N = 21)
Total Bile Acids
Day 0 and 43

Mean values + SEM
Enrichment of INT-747 within Total Bile Acid Pool – Day 43

Total bile acids (μmol/L)

- Placebo
- 25 mg
- 50 mg

Bile acids other than INT-747
INT-747+ Conjugates
Conclusions: INT-747 in DM & NAFLD

- Improves GIR at low & high dose insulin infusions
 - Consistent with hepatic & peripheral effects
- Decreases body weight
 - Possibly related to ↑ in FGF-19
- ↓ in γ-Glutamyl Transpeptidase
- Improvement in ELF fibrosis score – at 25mg
- Well tolerated
 - Not clearly different to Placebo
- Merits further study